Speed of Sound and Some Thermodynamic Properties of Liquid Methylcyclopentane and Butylcyclohexane in a Wide Range of Pressure¹

J. L. Daridon,^{2, 3} F. Plantier,² and B. Lagourette²

Ultrasonic velocity measurements were performed on liquid methylcyclopentane and butylcyclohexane at pressures from atmospheric up to 150 MPa in the temperature range from 293 to 373 K using a pulse echo technique operating at 3 MHz. The data were used to evaluate various thermophysical properties such as density, and isentropic and isothermal compressibilities up to 150 MPa with the help of additional density measurements.

KEY WORDS: butylcyclohexane; compressibility; density; methylcyclopentane; pressure; speed of sound.

1. INTRODUCTION

Measurements of thermophysical properties such as density, compressibility, and heat capacities in pure liquids under pressure are of great interest not only for industrial applications (for example, in the petroleum industry), but also for fundamental aspects in view of designing equations of state able to represent dense fluids. As these measurements are difficult to perform under high pressure, it is often advantageous to measure the speed of sound to characterize the thermophysical properties of fluids. This property, which can be determined experimentally with a high degree of accuracy including at high pressures, presents the advantage of giving access to various physical properties [1, 2] if, at the same time, one has information about density and heat capacity at atmospheric pressure.

¹ Paper presented at the Sixteenth European Conference on Thermophysical Properties, September 1–4, 2002, London, United Kingdom.

² Laboratoire des Fluides Complexes, Université de Pau, BP 1155, 64013 Pau Cedex, France.

³ To whom correspondence should be addressed. E-mail: jean-luc.daridon@univ-pau.fr

Moreover, as both thermal and volumetric properties appear in its definition, the speed of sound can be used directly to develop and adjust equations of state [3, 4] or can, at least, be used to test the reliability with which they can represent derived properties [5].

It can readily be observed that, for the hydrocarbon components, most of the measurements of speed of sound under pressure has focused on the normal paraffins series. For the branched alkanes, the aromatics or naphthenes, other families which are of major interest for petroleum applications, studies are essentially restricted to compounds with few carbon atoms and at atmospheric pressure. It is therefore necessary to conduct specific experiments on components belonging to these families to set up a base which can then be used to define new models specially adapted to complex mixtures. With this aim in mind, an ultrasonic investigation of pure compounds belonging to the naphthene family (both alkylcyclopentane and alkylcyclohexane) has been initiated.

In this paper, which focuses on methylcyclopentane (C_6H_{12}) and butylcyclohexane $(C_{10}H_{20})$ in the liquid state, data of several thermophysical properties including density, speed of sound and isothermal and isentropic compressibilities determined from ultrasonic measurements are given at pressures ranging from atmospheric pressure to 150 MPa and at temperatures between 293.15 and 373.15 K.

2. EXPERIMENTAL

Speed-of-sound measurements were carried out using a pulse echo technique operating at 3 MHz. The experimental apparatus, which has been described in a previous publication [6], is made up of an autoclave cylindrical cell on which two piezoelectric (PZT) elements are fixed at each extremity. These transducers are connected to an ultrasonic emission/ reception device (Panametrics 5055 PRM) which allows measurements by transmission and reflection. The speed of sound is deduced from a double measurement by transmission and by reflection of the transit time of the wave through the sample [7] using a digital oscilloscope with memory storage (Gould 4090). The path length of the wave through the sample was determined accurately at each pressure and temperature by calibration with water using the data of Del Grosso and Mader [8], Wilson [9], and of Petitet et al. [10]. To ensure thermal uniformity within the fluid, the cell is fully immersed in a bath of heat-carrying fluid agitated and thermoregulated by a Bioblock thermostat with a stability of 0.02 K. The temperature was determined using a platinum probe (Pt100) placed inside the experimental vessel. The pressure is generated by a pneumatic pump (Haskel) and measured by an HBM P3M gauge which is frequently checked against a dead weight tester (Bundenberg) to an uncertainty of better than 0.02 per cent. The propagation of all error sources leads to an uncertainty of the speed of sound better than 0.2 per cent over the entire pressure range (0.1 to 150 MPa), an uncertainty confirmed by several tests performed with hexane [11] and heptane [12].

Additional density measurements were carried out by means of an Anton Paar densimeter (DMA60 model) equipped with a high pressure cell (DMA 512 P) in the operating range of 0.1 to 60 MPa. The principle of this apparatus is to measure the period of oscillation of a U-shaped tube and to deduce the density which is related to the square of the period by a linear law whose parameters are calibrated by the method proposed by Lagourette et al. [13] using reference data for water [9]. The overall uncertainty obtained by this apparatus is estimated to be better than $0.1 \text{ kg} \cdot \text{m}^{-3}$.

Both compounds were supplied by Fluka with a stated purity higher than 99% and were used without further purification.

3. RESULTS AND DISCUSSION

The speed of sound u was measured at 10 K intervals from 293.15 to 373.15 K and from atmospheric pressure to 150 MPa. The results are reported in Table I and plotted as a function of temperature and pressure in Figs. 1 and 2. The data were fitted to a two-dimensional rational function which correlates $1/u^2$ instead of u:

Fig. 1. Speed of sound *u* in liquid methylcyclopentane as a function of pressure along various isotherms.

					1				
					T (K)				
P (MPa)	293.15	303.15	313.15	323.15	333.15	343.15	353.15	363.15	373.15
methylcy	clopenta	ne							
0.1013	1200.3	1152.0	1104.9	1057.9	1012.5				
10	1263.6	1219.3	1175.5	1132.5	1092.2	1051.9	1011.6	974.5	934.0
20	1321.3	1279.2	1238.5	1198.6	1160.2	1123.4	1086.2	1051.7	1014.2
30	1373.9	1333.2	1295.2	1257.3	1221.2	1186.2	1151.9	1118.9	1086.8
40	1422.2	1384.0	1347.0	1311.1	1276.1	1242.9	1210.7	1179.3	1149.1
50	1467.9	1431.4	1395.5	1360.3	1327.2	1295.5	1264.5	1234.0	1205.5
60	1511.0	1474.3	1440.7	1406.7	1374.5	1345.3	1314.1	1284.8	1257.4
70	1551.7	1515.9	1482.8	1449.6	1418.7	1389.2	1361.0	1331.8	1305.2
80	1589.9	1555.1	1522.6	1491.4	1460.7	1431.5	1403.4	1376.0	1348.4
90	1626.9	1592.5	1561.0	1529.9	1500.5	1472.0	1444.1	1417.4	1392.2
100	1661.2	1627.9	1597.1	1567.5	1538.1	1510.1	1483.6	1456.9	1432.8
110	1695.1	1661.9	1632.0	1602.5	1574.1	1546.3	1520.6	1494.8	1470.2
120	1727.3	1694.8	1665.4	1636.6	1608.2	1581.5	1556.2	1530.6	1506.8
130	1759.0	1726.6	1697.4	1669.2	1641.4	1615.0	1589.9	1565.0	1541.7
140	1787.6	1757.5	1728.1	1700.5	1673.2	1647.5	1622.5	1598.1	1575.4
150	1817.1	1786.6	1757.4	1731.0	1704.0	1678.6	1654.6	1629.8	1607.5
butyleve	lohexane								
0.1013	1328.7	1289.0	1247.7	1210.4	1169.8	1133.6	1097.1	1063.6	1028.7
10	1383.5	1346.7	1307.2	1270.4	1234.7	1199.7	1165.2	1131.7	1098.7
20	1432.8	1396.4	1360.6	1325.3	1291.7	1258.4	1225.7	1194.5	1164.4
30	1479.1	1443.6	1410.2	1375.8	1343.5	1312.1	1281.6	1251.7	1221.3
40	1522.5	1488.2	1455.5	1423.3	1391.7	1361.5	1332.3	1304.0	1274.9
50	1564.1	1530.3	1498.6	1467.6	1438.4	1408.2	1380.3	1351.8	1323.6
60	1603.4	1570.5	1539.4	1509.3	1479.6	1451.0	1421.9	1395.0	1368.8
70	1639.8	1607.5	1578.0	1547.9	1519.3	1492.6	1464.6	1438.1	1414.7
80	1675.4	1643.7	1614.8	1585.4	1558.3	1531.5	1504.9	1481.4	1454.5
90	1709.2	1678.0	1649.8	1621.0	1594.4	1568.1	1542.6	1518.6	1494.5
100	1741.3	1711.2	1683.5	1655.8	1629.7	1604.1	1579.0	1555.0	1531.3
110	1772.6	1743.4	1715.9	1688.7	1663.0	1637.7	1613.2	1589.3	1567.0
120	1802.7	1774.4	1747.0	1720.5	1694.9	1669.8	1646.5	1623.0	1600.2
130	1832.6	1803.3	1777.3	1751.4	1726.1	1701.9	1677.8	1655.3	1632.7
140	1860.9	1832.9	1805.5	1780.1	1755.1	1732.4	1708.5	1686.6	1664.0
150	1888.2	1860.7	1834.6	1808.4	1785.1	1761.4	1738.7	1715.7	1694.3

Table I. Speed of Sound u (m \cdot s⁻¹) of Methylcyclopentane and Butylcyclohexane as a Function of Pressure and Temperature

Fig. 2. Speed of sound u in liquid butylcyclohexane as a function of temperature along various isobars.

in which

$$A = A_0 + A_1 T + A_2 T^2 + A_3 T^3$$
(2)

and

$$\mathbf{E} = 1 + \mathbf{E}_1 T \tag{3}$$

The coefficients of this equation, obtained by a least squares fit for each set of data, are given in Table II along with the fit characteristics. As can be seen, the maximum deviation observed between the experimental speed-of-sound data and the smoothing function is of the same magnitude as the experimental error. Moreover, an analysis of the average deviation shows that the smoothing function does not introduce any systematic error. Therefore, the function is appropriate to interpolate the speed-of-sound measurements and to calculate the integration of $1/u^2$ with respect to pressure which accounts for the main contribution to the variation of density ρ with pressure:

$$\rho(P,T) - \rho_{\rm atm}(T) = \int_{P_{\rm atm}}^{P} 1/u^2 \, \mathrm{d}P + T \int_{P_{\rm atm}}^{P} \alpha_P^2 / C_P \, \mathrm{d}P \tag{4}$$

where C_p is the heat capacity at constant pressure and α_p is the isobaric expansion coefficient. Thus, by evaluating numerically the last integral of Eq. (5), it is possible to evaluate the density as a function of pressure from speed-of-sound data since the density and heat capacity are known at atmospheric pressure [1]. This was done by using a predictor-corrector procedure [14] in which the initialization procedure proposed by Denielou et al. [15] was used. The atmospheric density data required to initiate the

	Parameters		Deviations of u
$\begin{array}{l} \textbf{methylcyclopentane} \\ A_0 = -2.58380 \times 10^{-7} \\ A_1 = 3.03499 \times 10^{-9} \\ A_2 = -5.06490 \times 10^{-12} \end{array}$	$\begin{split} A_3 &= 3.45293 \times 10^{-15} \\ B &= 1.90545 \times 10^{-9} \\ C &= -6.84460 \times 10^{-12} \end{split}$	$\begin{split} D &= 1.51233 \times 10^{-14} \\ E_1 &= -2.02272 \times 10^{-3} \\ F &= 7.51656 \times 10^{-3} \end{split}$	$AD(\%) = -2.1 \times 10^{-3}$ $AAD(\%) = 4.5 \times 10^{-2}$ $MD(\%) = 1.4 \times 10^{-1}$
butylcyclohexane $A_0 = 8.50788 \times 10^{-8}$ $A_1 = 2.66863 \times 10^{-10}$ $A_2 = 2.31173 \times 10^{-12}$	$\begin{split} A_3 &= -3.40960 \times 10^{-15} \\ B &= 1.43645 \times 10^{-9} \\ C &= -4.53230 \times 10^{-12} \end{split}$	$\begin{split} D &= 9.56359 \times 10^{-15} \\ E_1 &= -1.74891 \times 10^{-3} \\ F &= 6.77444 \times 10^{-3} \end{split}$	$\begin{aligned} AD(\%) &= 1.3 \times 10^{-3} \\ AAD(\%) &= 3.5 \times 10^{-2} \\ MD(\%) &= 1.5 \times 10^{-1} \end{aligned}$

Table II. Parameters of Eqs. (1) to (3) with T in K, P in MPa, and u in $m \cdot s^{-1}$

iterative procedure were measured with the Anton Paar densimeter, whereas the atmospheric values of C_P come from the compilation of Zabransky et al. [16].

The density data derived from these speed-of-sound measurements are listed in Table III. The uncertainty of these data which has been estimated to be 0.1% on the basis of tests performed with hexane [11], was checked up to 60 MPa (Table III) by comparison with direct measurements performed with the high pressure DMA device. On reading this table one can see that the maximum deviation observed between the two sets of data is actually less than 0.1%.

The data for the speed of sound and density were used to evaluate the compressibilities of both components. The isentropic compressibility κ_s was determined (Table IV) with an uncertainty of 0.3% by using the following relation:

$$\kappa_S = \frac{1}{\rho u^2} \tag{5}$$

whereas the isothermal compressibility κ_T was correlated by means of a Tait-like equation:

$$\kappa_T = -\rho \frac{a}{P+b} \tag{6}$$

with

$$\mathbf{a} = \mathbf{a}_0 + \mathbf{a}_1 T + \mathbf{a}_2 T^2 \tag{7}$$

$$b = b_0 + b_1 T + b_2 T^2 \tag{8}$$

in which the coefficients a_0 , a_1 , a_2 and b_0 , b_1 , b_2 were adjusted by fitting the data of the volume change with respect to pressure $(v - v_{atm})$ to the integral

T (K) 293.15 303.15 313.15 323.15 343.15 353.15 363.15 373.15 methyl=vertame 0.1013 748.54 739.948 730.31 720.57 710.76 10 756.83 748.54 739.95 731.11 722.06 712.86 703.55 694.18 684.79 20 764.65 756.91 748.91 740.69 732.31 723.83 715.29 706.76 698.30 30 771.77 764.48 756.95 749.22 741.37 733.44 725.49 717.59 708.80 40 78.33 717.10 764.42 756.95 749.52 742.03 734.56 727.16 718.89 60 790.13 783.80 777.72 770.59 763.82 757.02 750.62 741.51 70 795.49 789.47 786.47 787.08 781.18 775.59 769.66 763.76 755.19 751.19 765.69										
P (MPa) 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15 373.15 methyleyclopentame 0.1013 748.54 739.94 730.31 720.57 710.76 - 10 756.83 748.54 739.95 731.11 722.06 712.86 703.55 694.18 684.79 20 764.65 756.91 748.91 740.69 732.31 723.83 711.59 706.76 698.30 30 771.77 764.48 756.95 749.22 741.37 733.44 725.49 717.97 709.59 763.82 751.02 750.25 743.59 731.10 60 790.13 783.80 777.27 770.59 763.82 751.02 750.80 763.62 757.50 751.56 90 805.37 799.70 798.84 787.47 786.39 780.73 775.19 769.66 763.76 758.05 100 809.49 804.46						T (K)				
methylyclopentane v	P (MPa)	293.15	303.15	313.15	323.15	333.15	343.15	353.15	363.15	373.15
0.1013 748.54 739.48 730.31 720.57 710.76 10 756.83 748.54 739.95 731.11 722.06 712.86 70.355 694.18 684.79 20 764.65 756.91 748.91 740.69 732.31 723.83 715.29 706.76 698.30 30 771.77 764.48 756.95 749.22 741.37 733.44 725.49 717.59 709.80 40 778.33 771.41 764.27 756.95 749.52 742.03 734.56 727.16 719.89 50 784.43 777.83 771.01 764.03 756.96 749.84 742.75 735.75 728.91 60 790.13 783.80 777.27 770.59 763.82 757.02 750.25 743.59 737.10 70 795.49 789.41 783.13 776.70 770.19 763.66 757.18 750.80 744.61 80 800.56 794.70 788.64 782.44 776.16 769.87 763.62 757.50 751.56 90 805.37 799.70 793.84 787.84 781.77 775.69 769.66 763.76 758.05 100 809.94 804.46 798.78 792.78 787.80 781.18 775.35 769.64 764.13 110 814.31 808.99 803.47 797.83 792.11 786.39 780.73 775.19 769.64 120 818.50 813.33 807.96 802.47 796.91 791.34 785.83 780.46 775.29 130 822.51 817.48 812.26 806.90 801.48 796.06 790.70 788.47 786.45 140 826.38 821.48 816.38 811.16 805.87 800.58 790.26 785.37 150 830.11 822.52 820.35 815.25 810.08 804.92 799.81 794.84 790.08 Deviations from DMA results 4D(%): 4.8 × 10 ⁻⁵ AAD(%): 1.4 × 10 ⁻² MD(%): 5.2 × 10 ⁻² (up to 60 MPa) btylcycbexane 0.1013 799.20 791.88 784.28 776.80 769.14 761.31 753.59 745.87 737.77 10 805.82 798.81 791.73 784.60 777.43 770.20 762.94 755.64 748.31 20 811.96 805.28 798.55 791.79 784.99 778.17 771.52 764.46 757.60 30 817.66 811.27 804.84 798.38 791.90 785.41 778.91 772.41 765.91 40 823.00 816.85 810.68 804.49 798.28 792.07 785.86 779.65 773.46 50 828.03 821.01 816.15 810.19 804.22 798.25 792.28 786.63 780.45 70 837.30 831.75 826.18 820.61 815.03 809.46 803.90 798.33 786.49 90 845.72 840.48 835.23 820.51 815.55 809.79 804.03 798.28 792.54 786.43 710 837.30 831.75 826.18 820.61 815.03 804.45 803.90 798.33 786.49 90 845.72 840.48 835.23 820.91 844.33 822.91 824.10 819.00 833.81 100 849.66 844.56 839.44 834.33 822.91 824.10 819.00 833.81 100 849.66 844.56 839.44 834.33 822.91 824.10 819.00 833.81 100 849.66 844.57 830.41 835.23 822.97 824.18 19.06 813.57 120 857.1	methylcy	clopentane								
10 756.83 748.54 739.95 731.11 722.06 712.86 703.55 694.18 684.79 20 764.65 756.91 740.69 732.31 723.83 715.29 709.80 30 771.77 764.48 756.95 749.22 741.37 733.44 725.49 717.59 709.80 50 784.43 777.83 771.41 764.61 756.96 749.82 742.03 734.56 727.16 719.89 50 784.43 777.83 771.01 764.03 756.96 749.82 750.25 743.57 728.16 60 790.13 783.80 777.27 770.59 763.66 757.18 750.80 744.61 80 800.56 794.70 788.64 782.74 776.16 769.87 763.62 757.50 751.56 90 805.37 799.70 793.84 781.78 781.18 775.39 769.64 764.13 10 814.31 808.99 803.47 797.83 792.17 751.99 769.64 764.51 100 </td <td>0.1013</td> <td>748.54</td> <td>739.48</td> <td>730.31</td> <td>720.57</td> <td>710.76</td> <td></td> <td></td> <td></td> <td></td>	0.1013	748.54	739.48	730.31	720.57	710.76				
20 764.65 756.91 748.91 740.69 732.31 723.83 715.29 706.76 698.30 30 711.77 764.48 756.95 749.22 741.37 733.44 725.49 717.59 709.80 40 778.33 771.41 764.27 756.95 749.52 742.03 734.56 727.16 719.99 60 790.13 783.80 777.27 770.59 763.82 757.02 750.25 743.59 737.10 70 795.49 789.41 783.13 776.70 770.19 763.66 751.18 750.80 744.61 80 805.57 799.70 793.84 781.78 781.78 775.59 769.66 763.76 758.50 100 809.94 804.46 798.78 792.96 787.08 781.18 775.35 769.64 764.73 775.29 769.64 764.75 755.25 100 80.537 790.70 754.47 780.45 757.50 757.50 757.50 757.50 757.50 757.50 757.52 750.57 750.25 750.26	10	756.83	748.54	739.95	731.11	722.06	712.86	703.55	694.18	684.79
30 771.77 764.48 756.95 749.22 741.37 733.44 725.49 717.59 709.80 40 778.33 771.41 764.27 756.95 749.52 742.03 734.56 727.16 719.89 50 784.43 777.83 771.01 764.03 756.96 749.84 742.75 735.75 728.91 60 790.13 783.80 777.27 770.59 763.26 757.02 750.25 743.59 731.16 750.85 745.65 749.71 756.95 749.72 776.95 763.62 757.10 751.85 750.02 745.59 751.02 751.50 751.50 751.05 751.65 749.64 749.73 775.35 769.64 763.76 758.05 100 809.94 803.47 797.83 792.11 786.39 780.73 775.19 769.64 776.95 749.52 749.53 740.73 750.55 790.26 785.37 100 813.50 813.33 807.96 802.47 796.91 711.41 753.59 745.87 777.7 70.50 780.	20	764.65	756.91	748.91	740.69	732.31	723.83	715.29	706.76	698.30
40 78.33 71.41 764.27 756.95 749.52 742.03 734.56 727.16 719.89 50 784.43 777.83 771.01 764.03 756.96 749.84 742.75 735.75 728.91 60 790.13 783.80 777.27 770.59 763.82 757.02 750.25 743.59 737.10 70 795.49 784.91 783.13 776.70 770.19 763.66 757.18 750.02 754.05 744.61 800.56 794.70 788.64 782.44 776.16 769.87 763.62 757.50 751.56 90 805.37 799.70 793.84 787.84 781.08 781.18 775.35 769.64 764.13 110 814.31 808.99 807.47 796.91 791.34 785.83 780.73 751.9 769.66 751.89 120 818.50 813.33 807.96 802.47 796.17 791.34 785.73 780.73 751.9 785.37 780.45 746.45 751.99 781.37 780.66	30	771.77	764.48	756.95	749.22	741.37	733.44	725.49	717.59	709.80
50 78.4.43 777.83 771.01 764.03 756.96 749.84 742.75 735.75 728.91 60 790.13 783.80 777.27 770.59 763.82 757.02 750.25 743.59 737.10 70 795.49 789.41 783.13 776.70 770.19 763.66 757.02 750.25 743.59 744.61 80 800.56 794.70 788.64 782.44 776.16 769.87 763.62 757.50 751.56 90 803.37 799.70 793.84 787.78 792.11 786.39 780.73 775.19 769.64 764.13 110 814.31 808.99 803.47 797.83 792.11 786.39 780.73 775.19 768.65 120 818.50 813.33 807.96 801.48 796.06 790.70 785.47 780.45 130 822.51 817.48 816.26 811.16 805.87 800.58 795.35 790.26 785.37 140 826.38 821.48 816.38 811.66 8	40	778.33	771.41	764.27	756.95	749.52	742.03	734.56	727.16	719.89
60 790.13 783.80 777.27 770.59 763.82 757.02 750.25 743.59 737.10 70 795.49 789.41 783.13 776.70 770.19 763.66 757.18 750.80 744.61 80 800.56 794.70 788.64 782.44 776.16 769.87 763.62 757.15 758.05 100 809.94 804.46 798.78 792.96 787.08 781.18 775.35 769.64 764.13 110 814.31 808.99 803.47 797.83 792.11 786.39 780.73 775.19 769.66 120 818.50 813.33 807.96 802.47 796.91 791.34 785.83 780.46 775.19 780.45 130 822.51 817.48 816.38 811.16 805.87 800.58 795.35 790.26 785.37 140 826.38 821.48 816.38 811.62 810.88 804.92 798.11 714.84 790.89 150 830.11 825.32 820.35 795.57	50	784.43	777.83	771.01	764.03	756.96	749.84	742.75	735.75	728.91
70 795.49 789.41 783.13 776.70 770.19 763.66 757.18 750.80 744.61 80 800.56 794.70 788.64 782.44 776.16 769.87 763.62 757.50 751.56 90 805.37 799.70 793.84 787.84 781.17 775.69 769.66 763.76 758.05 100 809.94 804.46 798.78 792.96 787.08 781.18 775.35 769.64 764.13 110 814.31 808.99 803.47 796.91 791.34 785.83 780.46 775.29 130 822.51 817.48 812.26 806.90 801.48 796.06 790.70 785.47 780.45 140 826.38 821.48 816.38 811.16 805.87 800.58 799.81 790.26 785.37 150 830.11 825.32 820.35 815.25 810.08 804.92 799.81 794.84 790.86 160 R23.00 791.88 784.28 776.80 769.14 761.31 <td< td=""><td>60</td><td>790.13</td><td>783.80</td><td>777.27</td><td>770.59</td><td>763.82</td><td>757.02</td><td>750.25</td><td>743.59</td><td>737.10</td></td<>	60	790.13	783.80	777.27	770.59	763.82	757.02	750.25	743.59	737.10
80 800.56 794.70 788.64 782.44 776.16 769.87 763.62 757.50 751.56 90 805.37 799.70 793.84 787.84 781.77 775.69 769.66 763.76 758.05 100 809.94 804.46 798.78 792.96 787.08 781.18 775.35 769.64 764.13 110 814.31 808.99 803.47 797.83 792.11 786.39 780.73 775.19 769.86 120 818.50 813.33 807.96 802.47 796.91 791.34 785.83 780.46 775.29 130 822.51 817.48 812.26 806.90 801.48 790.60 790.70 785.47 780.45 140 826.38 821.48 816.38 811.16 805.87 800.58 795.35 790.26 785.37 150 830.11 825.32 820.35 815.25 810.08 804.92 799.81 794.84 790.86 120 beviations rom DMA results 790.26 785.47 737.77<	70	795.49	789.41	783.13	776.70	770.19	763.66	757.18	750.80	744.61
90805.37799.70793.84787.84781.77775.69769.66763.76758.05100809.94804.46798.78792.96787.08781.18775.35769.64764.13110814.31808.99803.47797.83792.11786.39780.73775.19769.86120818.50813.33807.96802.47796.91791.34785.33780.46775.29130822.51817.48816.38811.16805.87800.58795.35790.26785.37150830.11825.32820.35815.25810.08804.92799.81794.84790.88periations from DMA resultskury by	80	800.56	794.70	788.64	782.44	776.16	769.87	763.62	757.50	751.56
100 809.94 804.46 798.78 792.96 787.08 781.18 775.35 769.64 764.13 110 814.31 808.99 803.47 797.83 792.11 786.39 780.73 775.19 769.86 120 818.50 813.33 807.96 802.47 796.91 791.34 785.83 780.46 775.29 130 822.51 817.48 812.26 806.90 801.48 796.06 790.70 785.47 780.45 140 826.38 821.48 816.38 811.16 805.87 800.58 795.35 790.26 785.37 150 830.11 825.32 820.35 815.25 810.08 804.92 799.81 794.84 790.08 Deviations from DMA results K AD(%): 4.8 × 10 ⁻⁵ AAD(%): 1.4 × 10 ⁻² MD(%): 5.2 × 10 ⁻² (upt%): 5.2 × 10 ⁻² 0.1013 799.20 791.88 784.28 776.80 769.14 761.31 753.59 745.87 737.77 10 805.82 798.11 791.73 784.60 777.43 770.20 <td>90</td> <td>805.37</td> <td>799.70</td> <td>793.84</td> <td>787.84</td> <td>781.77</td> <td>775.69</td> <td>769.66</td> <td>763.76</td> <td>758.05</td>	90	805.37	799.70	793.84	787.84	781.77	775.69	769.66	763.76	758.05
110814.31808.99803.47797.83792.11786.39780.73775.19769.86120818.50813.33807.96802.47796.91791.34785.83780.46775.29130822.51817.48812.26806.90801.48796.06790.70785.47780.45140826.38821.48816.38811.16805.87800.58795.35790.26785.37150830.11825.32820.35815.25810.08804.92799.81794.84790.08Deviations from DMA resultsAD(%): 4.8 × 10 ⁻⁵ AAD(%): 1.4 × 10 ⁻² MD(%): 5.2 × 10 ⁻² (up to 0 MPa)*Nutleycbexane0.1013799.20791.88784.28776.80769.14761.31753.59745.87737.7710805.82798.81791.73784.60777.43770.20762.94755.64748.3120811.96805.28798.55791.79784.99778.1771.32764.46757.6030817.66811.27804.84798.38791.90785.41778.91772.41765.9140823.00816.85810.68804.49798.28792.27785.63790.65773.4650828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31<	100	809.94	804.46	798.78	792.96	787.08	781.18	775.35	769.64	764.13
120 818.50 813.33 807.96 802.47 796.91 791.34 785.83 780.46 775.29 130 822.51 817.48 812.26 806.90 801.48 796.06 790.70 785.47 780.45 140 826.38 821.48 816.38 811.16 805.87 800.58 795.35 790.26 785.37 150 830.11 825.32 820.35 815.25 810.08 804.92 799.81 794.84 790.08 Deviations from DMA results (up to 60 MPa) AD(%): 4.8 × 10 ⁻⁵ AAD(%): 1.4 × 10 ⁻² MD(%): 5.2 × 10 ⁻² 0.1013 799.20 791.88 784.28 776.80 769.14 761.31 753.59 745.87 737.77 10 805.82 798.51 791.73 784.60 777.43 770.20 762.94 755.64 748.31 20 811.96 805.22 798.55 791.79 784.99 778.17 771.32 764.46 757.60 30 817.66 811.27 804.84 798.38 791.90 785.41 778.91 772.4	110	814.31	808.99	803.47	797.83	792.11	786.39	780.73	775.19	769.86
130 822.51 817.48 812.26 806.90 801.48 796.06 790.70 785.47 780.45 140 826.38 821.48 816.38 811.16 805.87 800.58 795.35 790.26 785.37 150 830.11 825.32 820.35 815.25 810.08 804.92 799.81 794.84 790.08 Deviations from DMA results AD(%): 4.8 × 10 ⁻⁵ AAD(%): 1.4 × 10 ⁻² MD(%): 5.2 × 10 ⁻² (up to 60 MPa) D.1013 799.20 791.88 784.28 776.80 769.14 761.31 753.59 745.87 737.77 10 805.82 798.81 791.73 784.60 777.43 770.20 762.94 755.64 748.31 20 811.96 805.28 798.55 791.79 784.99 778.17 771.32 764.46 757.60 30 817.66 811.27 804.84 798.28 792.07 785.86 779.65 773.46 50 828.03 822.10 816.15 810.19 804.22	120	818.50	813.33	807.96	802.47	796.91	791.34	785.83	780.46	775.29
140826.38821.48816.38811.16805.87800.58795.35790.26785.37150830.11825.32820.35815.25810.08 804.92 799.81794.84790.08Deviations from DMA resultsAD(%): 4.8×10^{-5} AAD(%): 1.4×10^{-2} MD(%): 5.2×10^{-2} (up to 60 MPa)https://www.sciencesistem.D.1013799.20791.88784.28776.80769.14761.31753.59745.87737.7710805.82798.81791.73784.60777.43770.20762.94755.64748.3120811.96805.28798.55791.79784.99778.17771.32764.46757.6030817.66811.27804.84798.38791.90785.41778.91772.41765.9140823.00816.85810.68804.49798.28792.27785.86779.65773.4650828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.21820.00813.81826.87100849.66844.56839.44834.33829.21 <td>130</td> <td>822.51</td> <td>817.48</td> <td>812.26</td> <td>806.90</td> <td>801.48</td> <td>796.06</td> <td>790.70</td> <td>785.47</td> <td>780.45</td>	130	822.51	817.48	812.26	806.90	801.48	796.06	790.70	785.47	780.45
150830.11825.32820.35815.25810.08804.92799.81794.84790.08Deviations from DMA results $AD(\%): 4.8 \times 10^{-5}$ $AAD(\%): 1.4 \times 10^{-2}$ $MD(\%): 5.2 \times 10^{-2}$ butylcylekexane0.1013799.20791.88784.28776.80769.14761.31753.59745.87737.7710805.82798.81791.73784.60777.43770.20762.94755.64748.3120811.96805.28798.55791.79784.99778.17771.32764.46757.6030817.66811.27804.84798.38791.90785.41778.91772.41765.9140823.00816.85810.68804.49798.28792.07785.86779.65773.4650828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44838.50833.51828.52823.55 </td <td>140</td> <td>826.38</td> <td>821.48</td> <td>816.38</td> <td>811.16</td> <td>805.87</td> <td>800.58</td> <td>795.35</td> <td>790.26</td> <td>785.37</td>	140	826.38	821.48	816.38	811.16	805.87	800.58	795.35	790.26	785.37
Deviations from DMA results (up to 60 MPa)AD(%): 4.8×10^{-5} AAD(%): 1.4×10^{-2} MD(%): 5.2×10^{-2} butyleyclexane0.1013799.20791.88784.28776.80769.14761.31753.59745.87737.7710805.82798.81791.73784.60777.43770.20762.94755.64748.3120811.96805.28798.55791.79784.99778.17771.32764.46757.6030817.66811.27804.84798.38791.90785.41778.91772.41765.9140823.00816.85810.68804.49798.28792.07785.86779.65773.4650828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.71120857.10852.87851.11846.35841.59836.83832.08 <td< td=""><td>150</td><td>830.11</td><td>825.32</td><td>820.35</td><td>815.25</td><td>810.08</td><td>804.92</td><td>799.81</td><td>794.84</td><td>790.08</td></td<>	150	830.11	825.32	820.35	815.25	810.08	804.92	799.81	794.84	790.08
(up to 60 MPa)butylcyclohexane0.1013799.20791.88784.28776.80769.14761.31753.59745.87737.7710805.82798.81791.73784.60777.43770.20762.94755.64748.3120811.96805.28798.55791.79784.99778.17771.32764.46757.6030817.66811.27804.84798.38791.90785.41778.91772.41765.9140823.00816.85810.68804.49798.28792.07785.86779.65773.4650828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.87110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.24847.37842.508	Deviations	from DMA	A results		AD(%): 4	4.8×10^{-5}	AAD(%):	1.4×10^{-2}	MD(%):	5.2×10^{-2}
butylcyclohexane0.1013799.20791.88784.28776.80769.14761.31753.59745.87737.7710805.82798.81791.73784.60777.43770.20762.94755.64748.3120811.96805.28798.55791.79784.99778.17771.32764.46757.6030817.66811.27804.84798.38791.90785.41778.91772.41765.9140823.00816.85810.68804.49798.28792.07785.86779.65773.4650828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.87110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.24847.37842.50837.63832.06827.91	(up to 60 M	(Pa)			(.).		(.).		()	
butyleyclexane0.1013799.20791.88784.28776.80769.14761.31753.59745.87737.7710805.82798.81791.73784.60777.43770.20762.94755.64748.3120811.96805.28798.55791.79784.99778.17771.32764.46757.6030817.66811.27804.84798.38791.90785.41778.91772.41765.9140823.00816.85810.68804.49798.28792.07785.86779.65773.4650828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.71120857.10852.24847.37842.50837.63832.76827.91823.07818.26130860.61855.87851.11846.35841.59836.83832.0882	(°1									
0.1013799.20791.88784.28776.80769.14761.31753.59745.87737.7710805.82798.81791.73784.60777.43770.20762.94755.64748.3120811.96805.28798.55791.79784.99778.17771.32764.46757.6030817.66811.27804.84798.38791.90785.41778.91772.41765.9140823.00816.85810.68804.49798.28792.07785.86779.65773.4650828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.77110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.87851.11846.35841.59836.83832.08827.36822.66140 <td>butylcycl</td> <td>ohexane</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	butylcycl	ohexane								
10805.82798.81791.73784.60777.43770.20762.94755.64748.3120811.96805.28798.55791.79784.99778.17771.32764.46757.6030817.66811.27804.84798.38791.90785.41778.91772.41765.9140823.00816.85810.68804.49798.28792.07785.86779.65773.4650828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.77110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.24847.37842.50837.63832.08827.36822.66140864.01859.37854.72850.06844.50840.75836.10831.48826.87150867.31 <t< td=""><td>0.1013</td><td>799.20</td><td>791.88</td><td>784.28</td><td>776.80</td><td>769.14</td><td>761.31</td><td>753.59</td><td>745.87</td><td>737.77</td></t<>	0.1013	799.20	791.88	784.28	776.80	769.14	761.31	753.59	745.87	737.77
20 811.96 805.28 798.55 791.79 784.99 778.17 771.32 764.46 757.60 30 817.66 811.27 804.84 798.38 791.90 785.41 778.17 771.32 764.46 757.60 40 823.00 816.85 810.68 804.49 798.28 792.07 785.86 779.65 773.46 50 828.03 822.10 816.15 810.19 804.22 798.25 792.28 786.33 780.40 60 832.78 827.05 821.31 815.55 809.79 804.03 798.28 792.54 786.83 70 837.30 831.75 826.18 820.61 815.03 809.46 803.90 798.36 792.84 80 841.60 836.21 830.81 825.41 820.00 814.59 809.20 803.83 798.49 90 845.72 840.48 835.23 829.97 824.71 819.46 814.22 809.00 803.81 100 849.66 844.56 839.44 834.33 829.21 824.10 819.00 813.92 808.71 110 853.45 848.47 843.49 838.50 833.51 828.52 823.55 818.60 813.67 120 857.10 852.24 847.37 842.50 837.63 832.76 827.91 823.07 818.26 130 860.61 855.87 851.11 846.35 841.52 839.97 <	10	805.82	798.81	791.73	784.60	777.43	770.20	762.94	755.64	748.31
30 817.66 811.27 804.84 798.38 791.90 785.41 778.91 772.41 765.91 40 823.00 816.85 810.68 804.49 798.28 792.07 785.86 779.65 773.46 50 828.03 822.10 816.15 810.19 804.22 798.25 792.28 786.33 780.40 60 832.78 827.05 821.31 815.55 809.79 804.03 798.28 792.54 786.83 70 837.30 831.75 826.18 820.61 815.03 809.46 803.90 798.36 792.84 80 841.60 836.21 830.81 825.41 820.00 814.59 809.20 803.83 798.49 90 845.72 840.48 835.23 829.97 824.71 819.46 814.22 809.00 803.81 100 849.66 844.56 839.44 834.33 829.21 824.10 819.00 813.92 808.71 110 853.45 848.47 843.49 838.50 833.51 828.52 823.55 818.60 813.67 120 857.10 852.24 847.37 842.50 837.63 832.76 827.91 823.07 818.26 130 860.61 855.87 851.11 846.35 841.59 836.83 832.08 827.36 822.66 140 864.01 859.37 854.72 850.06 844.50 840.75 836.10	20	811.96	805.28	798.55	791.79	784.99	778.17	771.32	764.46	757.60
40823.00816.85810.68804.49798.28792.07785.86779.65773.4650828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.87110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.24847.37842.50837.63832.76827.91823.07818.26130860.61855.87851.11846.35841.59836.83832.08827.36822.66140864.01859.37854.72850.06845.40840.75836.10831.48826.87150867.31862.76858.21853.64849.08844.52839.97835.44830.93Deviations from DMA resultsAD(%): 3.1×10^{-2} AAD(%): 3.2×10^{-2} MD(%): 8.2×10^{-2} (up to 60 MPa)	30	817.66	811.27	804.84	798.38	791.90	785.41	778.91	772.41	765.91
50828.03822.10816.15810.19804.22798.25792.28786.33780.4060832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.87110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.24847.37842.50837.63832.76827.91823.07818.26130860.61855.87851.11846.35841.59836.83832.08827.36822.66140864.01859.37854.72850.06845.40840.75836.10831.48826.87150867.31862.76858.21853.64849.08844.52839.97835.44830.93Deviations from DMA resultsAD(%): 3.1×10^{-2} AAD(%): 3.2×10^{-2} MD(%): 8.2×10^{-2} (up to 60 MPa)	40	823.00	816.85	810.68	804.49	798.28	792.07	785.86	779.65	773.46
60832.78827.05821.31815.55809.79804.03798.28792.54786.8370837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.87110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.24847.37842.50837.63832.76827.91823.07818.26130860.61855.87851.11846.35841.59836.83832.08827.36822.66140864.01859.37854.72850.06845.40840.75836.10831.48826.87150867.31862.76858.21853.64849.08844.52839.97835.44830.93Deviations from DMA resultsAD(%): 3.1×10^{-2} AAD(%): 3.2×10^{-2} MD(%): 8.2×10^{-2} (up to 60 MPa)	50	828.03	822.10	816.15	810.19	804.22	798.25	792.28	786.33	780.40
70837.30831.75826.18820.61815.03809.46803.90798.36792.8480841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.87110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.24847.37842.50837.63832.76827.91823.07818.26130860.61855.87851.11846.35841.59836.83832.08827.36822.66140864.01859.37854.72850.06845.40840.75836.10831.48826.87150867.31862.76858.21853.64849.08844.52839.97835.44830.93Deviations from DMA resultsAD(%): 3.1×10^{-2} AAD(%): 3.2×10^{-2} MD(%): 8.2×10^{-2} (up to 60 MPa)	60	832.78	827.05	821.31	815.55	809.79	804.03	798.28	792.54	786.83
80841.60836.21830.81825.41820.00814.59809.20803.83798.4990845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.87110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.24847.37842.50837.63832.76827.91823.07818.26130860.61855.87851.11846.35841.59836.83832.08827.36822.66140864.01859.37854.72850.06845.40840.75836.10831.48826.87150867.31862.76858.21853.64849.08844.52839.97835.44830.93Deviations from DMA resultsAD(%): 3.1×10^{-2} AAD(%): 3.2×10^{-2} MD(%): 8.2×10^{-2} (up to 60 MPa)	70	837.30	831.75	826.18	820.61	815.03	809.46	803.90	798.36	792.84
90845.72840.48835.23829.97824.71819.46814.22809.00803.81100849.66844.56839.44834.33829.21824.10819.00813.92808.87110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.24847.37842.50837.63832.76827.91823.07818.26130860.61855.87851.11846.35841.59836.83832.08827.36822.66140864.01859.37854.72850.06845.40840.75836.10831.48826.87150867.31862.76858.21853.64849.08844.52839.97835.44830.93Deviations from DMA resultsAD(%): 3.1×10^{-2} AAD(%): 3.2×10^{-2} MD(%): 8.2×10^{-2} (up to 60 MPa)	80	841.60	836.21	830.81	825.41	820.00	814.59	809.20	803.83	798.49
100849.66844.56839.44834.33829.21824.10819.00813.92808.87110853.45848.47843.49838.50833.51828.52823.55818.60813.67120857.10852.24847.37842.50837.63832.76827.91823.07818.26130860.61855.87851.11846.35841.59836.83832.08827.36822.66140864.01859.37854.72850.06845.40840.75836.10831.48826.87150867.31862.76858.21853.64849.08844.52839.97835.44830.93Deviations from DMA resultsAD(%): 3.1×10^{-2} AAD(%): 3.2×10^{-2} MD(%): 8.2×10^{-2} (up to 60 MPa)	90	845.72	840.48	835.23	829.97	824.71	819.46	814.22	809.00	803.81
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	849.66	844.56	839.44	834.33	829.21	824.10	819.00	813.92	808.87
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	853.45	848.47	843.49	838.50	833.51	828.52	823.55	818.60	813.67
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	857.10	852.24	847.37	842.50	837.63	832.76	827.91	823.07	818.26
$ \begin{array}{ccccccccccccccccccccccccc$	130	860.61	855.87	851.11	846.35	841.59	836.83	832.08	827.36	822.66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140	864.01	859.37	854.72	850.06	845.40	840.75	836.10	831.48	826.87
Deviations from DMA results $AD(\%): 3.1 \times 10^{-2}$ $AAD(\%): 3.2 \times 10^{-2}$ $MD(\%): 8.2 \times 10^{-2}$ (up to 60 MPa)	150	867.31	862.76	858.21	853.64	849.08	844.52	839.97	835.44	830.93
	Deviations (up to 60 M	from DMA IPa)	A results		AD(%): 3	3.1×10^{-2}	AAD(%):	3.2×10^{-2}	MD(%):	8.2×10^{-2}

Table III. Density ρ (kg·m⁻³) Derived from Speed of Sound Measurements for Methylcyclopentane and Butylcyclohexane as a Function of Pressure and Temperature

P (MPa) 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15 373.15 methyeventame 0.0272 1.0190 1.1216 1.2400 1.3724 1 10 0.8276 0.8986 0.9781 1.0664 1.1609 1.2678 1.3889 1.5168 1.6740 20 0.7491 0.8074 0.8705 0.9397 1.0146 1.0947 1.1850 1.2723 1.3233 30 0.6664 0.7212 0.7685 0.8193 0.8724 0.9288 0.9895 1.0520 50 0.5916 0.6275 0.6661 0.7073 0.7500 0.7946 0.8421 0.8925 0.9440 60 0.5543 0.5870 0.6198 0.6573 0.6785 0.7130 0.7510 0.7813 70 0.5221 0.5121 0.5808 0.6127 0.6431 0.6785 0.6121 0.6785 70 0.4291 0.4476 0.4673 0.4881										
P (MPa) 293.15 303.15 313.15 323.15 333.15 343.15 353.15 363.15 373.15 methyleventame 0.1013 0.9272 1.0190 1.1216 1.2400 1.3724 10 0.8276 0.8986 0.9781 1.0664 1.1609 1.2678 1.3889 1.5168 1.6740 0.0 0.7491 0.8074 0.8705 0.9397 1.0146 1.0947 1.1850 1.2793 1.3323 30 0.6864 0.7359 0.7875 0.8443 0.9044 0.9691 1.0388 1.1132 1.1929 40 0.6552 0.6768 0.7212 0.7685 0.6193 0.7224 0.9288 0.9895 0.0520 50 0.5512 0.5808 0.6127 0.6451 0.6785 0.7130 0.7150 0.7188 60 0.4491 0.4591 0.5120 0.5423 0.5611 0.5638 0.6623 0.6121 0.6374 100 0.4474 0.4467						T (K)				
nentext view0.10130.92721.01901.12161.24001.3724100.82760.89860.97811.06641.16091.26781.38891.51681.6740200.74910.80740.87050.93971.01461.09471.18501.27931.3923300.63520.67680.71200.78550.84430.90440.96911.03881.11221.9293500.53160.62750.66610.70730.75000.79460.84210.89250.9440600.55430.58700.61980.65580.69300.72990.71190.81470.8881700.52120.58080.61270.64510.67850.71300.75100.7583800.49420.52030.54700.57460.60390.63380.66190.69720.7318800.46910.49310.51700.54230.56810.59500.62300.65170.68061000.44740.46910.49730.48810.50950.53180.55400.5740.6091200.40950.42810.44620.46530.48220.56200.5570.54690.53111300.37870.39410.41020.42630.44320.46020.47670.49550.51311400.37870.59150.42810.46910.48450.59150.42320.46920.47670.49550.5131 <t< th=""><th>P (MPa)</th><th>293.15</th><th>303.15</th><th>313.15</th><th>323.15</th><th>333.15</th><th>343.15</th><th>353.15</th><th>363.15</th><th>373.15</th></t<>	P (MPa)	293.15	303.15	313.15	323.15	333.15	343.15	353.15	363.15	373.15
0.1013 0.9272 1.0190 1.1216 1.2400 1.3724 10 0.8276 0.8986 0.9781 1.0664 1.1609 1.2678 1.3889 1.5168 1.6740 20 0.7491 0.8074 0.8705 0.9397 1.0146 1.0947 1.1850 1.2793 1.3923 30 0.6864 0.7359 0.7875 0.8443 0.9044 0.9691 1.0388 1.1132 1.1929 40 0.6352 0.6768 0.7212 0.7565 0.8193 0.8724 0.9288 0.9889 1.0520 50 0.5916 0.6275 0.6661 0.7073 0.7500 0.7299 0.7119 0.8147 0.8581 70 0.5221 0.5512 0.5808 0.6127 0.6451 0.6785 0.7130 0.7510 0.7518 90 0.4691 0.4931 0.5170 0.5412 0.538 0.6121 0.6374 100 0.4474 0.4476 0.4653 0.4852 0.5552<	methylcy	clopentane								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1013	0.9272	1.0190	1.1216	1.2400	1.3724				
20 0.7491 0.8074 0.8705 0.9397 1.0146 1.0947 1.1850 1.2793 1.3923 30 0.6864 0.7359 0.7875 0.8443 0.9044 0.9691 1.0388 1.1132 1.1929 40 0.6352 0.6768 0.7212 0.7685 0.8193 0.8724 0.9288 0.9889 1.0520 50 0.5516 0.6275 0.66198 0.6558 0.6930 0.7299 0.7719 0.8147 0.8581 70 0.5221 0.5808 0.6127 0.6451 0.6785 0.7130 0.7719 0.7119 0.8147 0.8881 80 0.4942 0.5203 0.5470 0.5746 0.6039 0.6338 0.6649 0.6972 0.7318 90 0.4691 0.4931 0.5170 0.5423 0.5614 0.5859 0.6121 0.6374 110 0.4274 0.4462 0.4653 0.4852 0.5525 0.5255 0.5469 0.5681 130 </td <td>10</td> <td>0.8276</td> <td>0.8986</td> <td>0.9781</td> <td>1.0664</td> <td>1.1609</td> <td>1.2678</td> <td>1.3889</td> <td>1.5168</td> <td>1.6740</td>	10	0.8276	0.8986	0.9781	1.0664	1.1609	1.2678	1.3889	1.5168	1.6740
30 0.6864 0.7359 0.7875 0.8443 0.9044 0.9691 1.0388 1.1132 1.1929 40 0.6352 0.6768 0.7212 0.7685 0.8193 0.8724 0.9288 0.9889 1.0520 50 0.5916 0.6275 0.6618 0.7073 0.7500 0.7946 0.8421 0.8925 0.9440 60 0.5221 0.5512 0.5808 0.6127 0.6451 0.6785 0.7130 0.7510 0.7883 80 0.4942 0.5203 0.5470 0.5746 0.6039 0.6338 0.6649 0.6972 0.7318 90 0.4691 0.4931 0.5170 0.5423 0.5611 0.5520 0.6230 0.6517 0.6806 100 0.4474 0.4469 0.4693 0.4481 0.4953 0.5950 0.518 0.5520 0.5255 0.5469 0.5611 130 0.3929 0.4103 0.4263 0.4452 0.4602 0.4776 0.4955 0	20	0.7491	0.8074	0.8705	0.9397	1.0146	1.0947	1.1850	1.2793	1.3923
40 0.6352 0.6768 0.7212 0.7685 0.8193 0.8724 0.9288 0.9889 1.0520 50 0.5916 0.6275 0.6661 0.7073 0.7500 0.7946 0.8421 0.8925 0.9440 60 0.5543 0.5870 0.6198 0.6558 0.6930 0.7299 0.7719 0.8147 0.8881 70 0.5221 0.5512 0.5808 0.6127 0.6451 0.6785 0.7130 0.7510 0.7883 80 0.4942 0.5203 0.5470 0.5423 0.5681 0.5950 0.6230 0.6517 0.6806 100 0.4474 0.4467 0.4673 0.4881 0.5095 0.5318 0.5540 0.5774 0.6009 120 0.4095 0.4281 0.4462 0.4653 0.4852 0.5052 0.5255 0.5469 0.5131 130 0.3929 0.4103 0.4273 0.4448 0.4601 0.4976 0.4776 0.4955 0.5130	30	0.6864	0.7359	0.7875	0.8443	0.9044	0.9691	1.0388	1.1132	1.1929
50 0.5916 0.6275 0.6661 0.7073 0.7500 0.7946 0.8421 0.8925 0.9440 60 0.5543 0.5870 0.6198 0.6558 0.6930 0.7299 0.7719 0.8147 0.8581 70 0.5221 0.5512 0.5808 0.6127 0.6451 0.6785 0.7130 0.7510 0.7883 80 0.4942 0.5203 0.5470 0.5746 0.6039 0.6338 0.6649 0.6972 0.7318 90 0.4691 0.4931 0.5170 0.5423 0.5681 0.5950 0.6230 0.6517 0.6806 100 0.4474 0.4476 0.4673 0.4881 0.5955 0.518 0.5540 0.5774 0.6009 120 0.4095 0.4281 0.4462 0.4653 0.4852 0.5052 0.5255 0.5469 0.5131 130 0.3929 0.4103 0.4273 0.4448 0.4631 0.4816 0.5003 0.5198 0.5130	40	0.6352	0.6768	0.7212	0.7685	0.8193	0.8724	0.9288	0.9889	1.0520
60 0.5543 0.5870 0.6198 0.6558 0.6930 0.7299 0.7719 0.8147 0.8581 70 0.5221 0.5512 0.5808 0.6127 0.6451 0.6785 0.7130 0.7510 0.7883 80 0.4942 0.5203 0.5470 0.5746 0.6039 0.6338 0.6649 0.6972 0.7318 90 0.4691 0.4931 0.5170 0.5423 0.5681 0.5950 0.6230 0.6517 0.6806 100 0.4474 0.44691 0.4908 0.5132 0.5370 0.5614 0.5859 0.6121 0.6374 110 0.4274 0.4476 0.4673 0.4881 0.5052 0.5255 0.5469 0.5811 130 0.3929 0.4103 0.4273 0.4484 0.4602 0.4776 0.4955 0.5130 140 0.3787 0.3941 0.4102 0.4263 0.4422 0.4657 0.4737 0.4898 120 0.3648 0.379	50	0.5916	0.6275	0.6661	0.7073	0.7500	0.7946	0.8421	0.8925	0.9440
70 0.5221 0.5512 0.5808 0.6127 0.6451 0.6785 0.7130 0.7510 0.7883 80 0.4942 0.5203 0.5470 0.5746 0.6039 0.6338 0.6649 0.6972 0.7318 90 0.4691 0.4931 0.5170 0.5423 0.5681 0.5950 0.6230 0.6517 0.6806 100 0.4474 0.44691 0.4908 0.5132 0.5370 0.5614 0.5859 0.6121 0.6374 110 0.4274 0.4476 0.4673 0.4881 0.5095 0.5318 0.5540 0.5774 0.6009 120 0.4095 0.4281 0.4462 0.4653 0.4852 0.5052 0.5255 0.5469 0.5681 130 0.3929 0.4103 0.4273 0.4448 0.4631 0.4462 0.4602 0.4776 0.4955 0.5130 150 0.3648 0.3796 0.3947 0.4094 0.4251 0.4409 0.4567 0.4737	60	0.5543	0.5870	0.6198	0.6558	0.6930	0.7299	0.7719	0.8147	0.8581
80 0.4942 0.5203 0.5470 0.5746 0.6039 0.6338 0.6649 0.6972 0.7318 90 0.4691 0.4931 0.5170 0.5423 0.5681 0.5950 0.6230 0.6517 0.6806 100 0.4474 0.44691 0.4908 0.5132 0.5370 0.5614 0.5859 0.6121 0.6374 110 0.4274 0.4476 0.4673 0.4881 0.5095 0.5318 0.5540 0.5774 0.6009 120 0.4095 0.4281 0.4462 0.4653 0.4852 0.5052 0.5255 0.5469 0.5681 130 0.3929 0.4103 0.4273 0.4448 0.4631 0.4816 0.5003 0.5198 0.5313 140 0.3787 0.3941 0.4102 0.4263 0.4432 0.4602 0.4776 0.4955 0.5130 150 0.3648 0.3796 0.3947 0.4094 0.4251 0.4409 0.4567 0.4737 0.4888 <td>70</td> <td>0.5221</td> <td>0.5512</td> <td>0.5808</td> <td>0.6127</td> <td>0.6451</td> <td>0.6785</td> <td>0.7130</td> <td>0.7510</td> <td>0.7883</td>	70	0.5221	0.5512	0.5808	0.6127	0.6451	0.6785	0.7130	0.7510	0.7883
90 0.4691 0.4931 0.5170 0.5423 0.5681 0.5950 0.6230 0.6517 0.6806 100 0.4474 0.4691 0.4908 0.5132 0.5370 0.5614 0.5859 0.6121 0.6374 110 0.4274 0.4476 0.4673 0.4881 0.5095 0.5318 0.5540 0.5774 0.6009 120 0.4095 0.4281 0.4462 0.4653 0.4852 0.5052 0.5255 0.5469 0.5681 130 0.3929 0.4103 0.4273 0.4448 0.4631 0.4816 0.5003 0.5198 0.5310 140 0.3787 0.3941 0.4102 0.4263 0.4432 0.4602 0.4776 0.4955 0.5130 150 0.3648 0.3796 0.3947 0.4094 0.4251 0.4409 0.4567 0.4737 0.4898 Dutylcycbexare 0 0 0.6484 0.6903 0.7391 0.7898 0.8438 0.9021 0.9655	80	0.4942	0.5203	0.5470	0.5746	0.6039	0.6338	0.6649	0.6972	0.7318
100 0.4474 0.4691 0.4908 0.5132 0.5370 0.5614 0.5859 0.6121 0.6374 110 0.4274 0.4476 0.4673 0.4881 0.5095 0.5318 0.5540 0.5774 0.6009 120 0.4095 0.4281 0.4462 0.4653 0.4852 0.5052 0.5255 0.5469 0.5611 130 0.3929 0.4103 0.4273 0.4448 0.4631 0.4816 0.5003 0.5198 0.5391 140 0.3787 0.3941 0.4102 0.4263 0.4432 0.4602 0.4776 0.4955 0.5130 150 0.3648 0.3796 0.3947 0.4094 0.4251 0.4409 0.4567 0.4737 0.4898 butylcyclohexane 0 0.6484 0.66903 0.7391 0.7898 0.8438 0.9021 0.9655 1.0332 1.1070 20 0.5999 0.6368 0.6675 0.7191 0.7635 0.8115 0.8263 0.8744 <td>90</td> <td>0.4691</td> <td>0.4931</td> <td>0.5170</td> <td>0.5423</td> <td>0.5681</td> <td>0.5950</td> <td>0.6230</td> <td>0.6517</td> <td>0.6806</td>	90	0.4691	0.4931	0.5170	0.5423	0.5681	0.5950	0.6230	0.6517	0.6806
110 0.4274 0.4476 0.4673 0.4881 0.5095 0.5318 0.5540 0.5774 0.6009 120 0.4095 0.4281 0.4462 0.4653 0.4852 0.5052 0.5255 0.5469 0.5681 130 0.3929 0.4103 0.4273 0.4448 0.4631 0.4816 0.5003 0.5198 0.5391 140 0.3787 0.3941 0.4102 0.4263 0.4432 0.4602 0.4776 0.4955 0.5130 150 0.3648 0.3796 0.3947 0.4094 0.4251 0.4409 0.4567 0.4737 0.4898 butylcylbexane 0.4031 0.7087 0.7600 0.8190 0.8787 0.9501 1.0222 1.1025 1.1851 1.2808 10 0.6484 0.6693 0.7391 0.7898 0.8438 0.9021 0.9655 1.0332 1.1070 20 0.5590 0.5915 0.6248 0.6617 0.6996 <td>100</td> <td>0.4474</td> <td>0.4691</td> <td>0.4908</td> <td>0.5132</td> <td>0.5370</td> <td>0.5614</td> <td>0.5859</td> <td>0.6121</td> <td>0.6374</td>	100	0.4474	0.4691	0.4908	0.5132	0.5370	0.5614	0.5859	0.6121	0.6374
120 0.4095 0.4281 0.4462 0.4653 0.4852 0.5052 0.5255 0.5469 0.5681 130 0.3929 0.4103 0.4273 0.4448 0.4631 0.4816 0.5003 0.5198 0.5391 140 0.3787 0.3941 0.4102 0.4263 0.4432 0.4602 0.4776 0.4955 0.5130 150 0.3648 0.3796 0.3947 0.4094 0.4251 0.4409 0.4567 0.4777 0.4898 butylcyclocare v v v v v v v v 0.1013 0.7087 0.7600 0.8190 0.8787 0.9501 1.0222 1.1025 1.1851 1.2808 10 0.6484 0.6903 0.7391 0.7898 0.8438 0.9021 0.9655 1.0332 1.1070 20 0.5999 0.6368 0.6765 0.7191 0.7635 0.8115 0.8629 0.9169 0.9736 30 0.5242<	110	0.4274	0.4476	0.4673	0.4881	0.5095	0.5318	0.5540	0.5774	0.6009
130 0.3929 0.4103 0.4273 0.4448 0.4631 0.4816 0.5003 0.5198 0.5391 140 0.3787 0.3941 0.4102 0.4263 0.4432 0.4602 0.4776 0.4955 0.5130 150 0.3648 0.3796 0.3947 0.4094 0.4251 0.4409 0.4567 0.4737 0.4898 butylcyclocar 0.4094 0.4251 0.4409 0.4567 0.4737 0.4898 butylcyclocar 0.4094 0.4251 0.4409 0.4567 0.4737 0.4898 0.1013 0.7087 0.7600 0.8190 0.8787 0.9501 1.0222 1.1025 1.1851 1.2808 10 0.6484 0.6903 0.7391 0.7898 0.8438 0.9021 0.9655 1.0332 1.1070 20 0.5590 0.5915 0.6248 0.6617 0.6996 0.7396 0.7817 0.8263 0.8754 40 0.5242	120	0.4095	0.4281	0.4462	0.4653	0.4852	0.5052	0.5255	0.5469	0.5681
140 0.3787 0.3941 0.4102 0.4263 0.4432 0.4602 0.4776 0.4955 0.5130 150 0.3648 0.3796 0.3947 0.4094 0.4251 0.4409 0.4567 0.4737 0.4898 butylcy:bexane <td>130</td> <td>0.3929</td> <td>0.4103</td> <td>0.4273</td> <td>0.4448</td> <td>0.4631</td> <td>0.4816</td> <td>0.5003</td> <td>0.5198</td> <td>0.5391</td>	130	0.3929	0.4103	0.4273	0.4448	0.4631	0.4816	0.5003	0.5198	0.5391
150 0.3648 0.3796 0.3947 0.4094 0.4251 0.4099 0.4567 0.4737 0.4898 butylcy:bexane 0.1013 0.7087 0.7600 0.8190 0.8787 0.9501 1.0222 1.1025 1.1851 1.2808 10 0.6484 0.6903 0.7391 0.7898 0.8438 0.9021 0.9655 1.0332 1.1070 20 0.5999 0.6368 0.6765 0.7191 0.7635 0.8115 0.8629 0.9169 0.9736 30 0.5590 0.5915 0.6248 0.6617 0.6996 0.7396 0.7817 0.8263 0.8754 40 0.5242 0.5528 0.5823 0.6136 0.6468 0.6811 0.7168 0.7543 0.7955 50 0.4936 0.5194 0.5456 0.5731 0.6010 0.6318 0.6625 0.6959 0.7314 60 0.4442 0.4653 0.4861 0.5086 0.5316 0.5545 0.5799 0.6056	140	0.3787	0.3941	0.4102	0.4263	0.4432	0.4602	0.4776	0.4955	0.5130
butylcyclohexane 0.1013 0.7087 0.7600 0.8190 0.8787 0.9501 1.0222 1.1025 1.1851 1.2808 10 0.6484 0.6903 0.7391 0.7898 0.8438 0.9021 0.9655 1.0332 1.1070 20 0.5999 0.6368 0.6765 0.7191 0.7635 0.8115 0.8629 0.9169 0.9736 30 0.5590 0.5915 0.6248 0.6617 0.6996 0.7396 0.7817 0.8263 0.8754 40 0.5242 0.5528 0.5823 0.6136 0.6468 0.6811 0.7168 0.7543 0.7955 50 0.4936 0.5194 0.5456 0.5731 0.6010 0.6318 0.6625 0.6959 0.7314 60 0.4671 0.4902 0.5138 0.5383 0.5641 0.5907 0.6196 0.6484 0.6784 70 0.4442 0.4653 0.4861 0.5086 0.5316 0.5545 0.5799	150	0.3648	0.3796	0.3947	0.4094	0.4251	0.4409	0.4567	0.4737	0.4898
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	butyleyel	ohexane								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1013	0.7087	0.7600	0.8190	0.8787	0.9501	1.0222	1.1025	1,1851	1.2808
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0 6484	0 6903	0 7391	0 7898	0.8438	0.9021	0.9655	1 0332	1 1070
30 0.5590 0.515 0.6248 0.6617 0.6996 0.7396 0.7817 0.8263 0.8754 40 0.5242 0.5528 0.5823 0.6136 0.6468 0.6811 0.7168 0.7543 0.7955 50 0.4936 0.5194 0.5456 0.5731 0.6010 0.6318 0.6625 0.6959 0.7314 60 0.4671 0.4902 0.5138 0.5383 0.5641 0.5907 0.6196 0.6484 0.6784 70 0.4442 0.4653 0.4861 0.5086 0.5316 0.5545 0.5799 0.6056 0.6302 80 0.4233 0.4426 0.4616 0.4820 0.5022 0.5234 0.5457 0.5669 0.5920 90 0.4047 0.4226 0.4399 0.4585 0.4770 0.4963 0.5161 0.5360 0.5570 100 0.3881 0.4043 0.4203 0.4372 0.4541 0.4716 0.4897 0.5081 0.5272	20	0.5999	0.6368	0.6765	0.7191	0.7635	0.8115	0.8629	0.9169	0.9736
40 0.5242 0.528 0.6323 0.6136 0.6468 0.6811 0.7168 0.7543 0.7953 50 0.4936 0.5194 0.5456 0.5731 0.6010 0.6318 0.6625 0.6959 0.7314 60 0.4671 0.4902 0.5138 0.5383 0.5641 0.5907 0.6196 0.6484 0.6784 70 0.4442 0.4653 0.4861 0.5086 0.5316 0.5545 0.5799 0.6056 0.6302 80 0.4233 0.4426 0.4616 0.4820 0.5022 0.5234 0.5457 0.5669 0.5920 90 0.4047 0.4226 0.4399 0.4585 0.4770 0.4963 0.5161 0.5360 0.5570 100 0.3881 0.4043 0.4203 0.4372 0.4541 0.4716 0.4897 0.5081 0.5272 110 0.3729 0.3878 0.4027 0.4182 0.4338 0.4500 0.4666 0.4837 0.5005	30	0.5590	0.5915	0.6248	0.6617	0.6996	0.7396	0.7817	0.8263	0.8754
50 0.4936 0.5194 0.5456 0.5731 0.6010 0.6318 0.6625 0.6959 0.7314 60 0.4671 0.4902 0.5138 0.5383 0.5641 0.5907 0.6196 0.6484 0.6784 70 0.4442 0.4653 0.4861 0.5086 0.5316 0.5545 0.5799 0.6056 0.6302 80 0.4233 0.4426 0.4616 0.4820 0.5022 0.5234 0.5457 0.5669 0.5920 90 0.4047 0.4226 0.4399 0.4585 0.4770 0.4963 0.5161 0.5360 0.5570 100 0.3881 0.4043 0.4203 0.4372 0.4541 0.4716 0.4897 0.5081 0.5272 110 0.3729 0.3878 0.4027 0.4182 0.4338 0.4500 0.4666 0.4837 0.5005 120 0.3590 0.3727 0.3867 0.4010 0.4156 0.4307 0.4455 0.4613 0.4773	40	0.5242	0.5528	0.5823	0.6136	0.6468	0.6811	0.7168	0.7543	0.7955
60 0.4671 0.4902 0.5138 0.5383 0.5641 0.5907 0.6196 0.6484 0.6784 70 0.4442 0.4653 0.4861 0.5086 0.5316 0.5545 0.5799 0.6056 0.6302 80 0.4233 0.4426 0.4616 0.4820 0.5022 0.5234 0.5457 0.5669 0.5920 90 0.4047 0.4226 0.4399 0.4585 0.4770 0.4963 0.5161 0.5360 0.5570 100 0.3881 0.4043 0.4203 0.4372 0.4541 0.4716 0.4897 0.5081 0.5272 110 0.3729 0.3878 0.4027 0.4182 0.4338 0.4500 0.4666 0.4837 0.5005 120 0.3590 0.3727 0.3867 0.4010 0.4156 0.4307 0.4455 0.4613 0.4773 130 0.3460 0.3593 0.3720 0.3852 0.3988 0.4126 0.4269 0.4411 0.4560	50	0.4936	0.5194	0.5456	0.5731	0.6010	0.6318	0.6625	0.6959	0.7314
70 0.4442 0.4653 0.4861 0.5086 0.5316 0.5545 0.5799 0.6056 0.6302 80 0.4233 0.4426 0.4616 0.4820 0.5022 0.5234 0.5457 0.5669 0.5920 90 0.4047 0.4226 0.4399 0.4585 0.4770 0.4963 0.5161 0.5360 0.5570 100 0.3881 0.4043 0.4203 0.4372 0.4541 0.4716 0.4897 0.5081 0.5272 110 0.3729 0.3878 0.4027 0.4182 0.4338 0.4500 0.4666 0.4837 0.5005 120 0.3590 0.3727 0.3867 0.4010 0.4156 0.4307 0.4455 0.4613 0.4773 130 0.3460 0.3593 0.3720 0.3852 0.3988 0.4126 0.4269 0.4411 0.4560 140 0.3342 0.3464 0.3589 0.3712 0.3840 0.3963 0.4097 0.4228 0.4368	60	0.4671	0.4902	0.5138	0.5383	0.5641	0.5907	0.6196	0.6484	0.6784
80 0.4233 0.4426 0.4616 0.4820 0.5022 0.5234 0.5457 0.5669 0.5920 90 0.4047 0.4226 0.4399 0.4585 0.4770 0.4963 0.5161 0.5360 0.5570 100 0.3881 0.4043 0.4203 0.4372 0.4541 0.4716 0.4897 0.5081 0.5272 110 0.3729 0.3878 0.4027 0.4182 0.4338 0.4500 0.4666 0.4837 0.5005 120 0.3590 0.3727 0.3867 0.4010 0.4156 0.4307 0.4455 0.4613 0.4773 130 0.3460 0.3593 0.3720 0.3852 0.3988 0.4126 0.4269 0.4411 0.4560 140 0.3342 0.3464 0.3589 0.3712 0.3840 0.3963 0.4097 0.4228 0.4368	70	0.4442	0.4653	0.4861	0.5086	0.5316	0.5545	0.5799	0.6056	0.6302
900.40470.42260.43990.45850.47700.49630.51610.53600.55701000.38810.40430.42030.43720.45410.47160.48970.50810.52721100.37290.38780.40270.41820.43380.45000.46660.48370.50051200.35900.37270.38670.40100.41560.43070.44550.46130.47731300.34600.35930.37200.38520.39880.41260.42690.44110.45601400.33420.34640.35890.37120.38400.39630.40970.42280.4368	80	0.4233	0.4426	0.4616	0.4820	0.5022	0.5234	0.5457	0.5669	0.5920
1000.38810.40430.42030.43720.45410.47160.48970.50810.52721100.37290.38780.40270.41820.43380.45000.46660.48370.50051200.35900.37270.38670.40100.41560.43070.44550.46130.47731300.34600.35930.37200.38520.39880.41260.42690.44110.45601400.33420.34640.35890.37120.38400.39630.40970.42280.4368	90	0.4047	0.4226	0.4399	0.4585	0.4770	0.4963	0.5161	0.5360	0.5570
110 0.3729 0.3878 0.4027 0.4182 0.4338 0.4500 0.4666 0.4837 0.5005 120 0.3590 0.3727 0.3867 0.4010 0.4156 0.4307 0.4455 0.4613 0.4773 130 0.3460 0.3593 0.3720 0.3852 0.3988 0.4126 0.4269 0.4411 0.4560 140 0.3342 0.3464 0.3589 0.3712 0.3840 0.3963 0.4097 0.4228 0.4368	100	0.3881	0.4043	0.4203	0.4372	0.4541	0.4716	0.4897	0.5081	0.5272
120 0.3590 0.3727 0.3867 0.4010 0.4156 0.4307 0.4455 0.4613 0.4773 130 0.3460 0.3593 0.3720 0.3852 0.3988 0.4126 0.4269 0.4411 0.4560 140 0.3342 0.3464 0.3589 0.3712 0.3840 0.3963 0.4097 0.4228 0.4368	110	0.3729	0.3878	0.4027	0.4182	0.4338	0.4500	0.4666	0.4837	0.5005
130 0.3460 0.3593 0.3720 0.3852 0.3988 0.4126 0.4269 0.4411 0.4560 140 0.3342 0.3464 0.3589 0.3712 0.3840 0.3963 0.4097 0.4228 0.4368	120	0.3590	0.3727	0.3867	0.4010	0.4156	0.4307	0.4455	0.4613	0.4773
140 0.3342 0.3464 0.3589 0.3712 0.3840 0.3963 0.4097 0.4228 0.4368	130	0.3460	0.3593	0.3720	0.3852	0.3988	0.4126	0.4269	0.4411	0.4560
	140	0.3342	0.3464	0.3589	0.3712	0.3840	0.3963	0.4097	0.4228	0.4368
150 0.3234 0.3348 0.3462 0.3582 0.3696 0.3817 0.3938 0.4066 0.4192	150	0.3234	0.3348	0.3462	0.3582	0.3696	0.3817	0.3938	0.4066	0.4192

Table IV.Isentropic Compressibility κ_s (GPa⁻¹) of Methylcyclopentane and Butylcyclo-
hexane as a Function of Pressure and Temperature

ŝ
Έ
ь.
n k
ρi
pu
, aı
\mathbf{Pa}
Σ
Е.
٩,
K
. 문.
Γ
vitl
^ ()
- 20
6
, vi
(Eqs
on
ati
- p
щ
Tai
he
of t
S
tei
Ш
ara
Å,
Υ.
le
Tab

	Parameters			Deviations	
methylcyclopentane $\rho_0 = 7.03784 \times 10^2$ $\rho_1 = 1.62195$ $\rho_2 = -6.53415 \times 10^{-3}$ $\rho_3 = 5.18684 \times 10^{-6}$	$a_0 = -5.94830 \times 10^{-5}$ $a_1 = -1.93120 \times 10^{-7}$ $a_2 = -1.74920 \times 10^{-11}$	$b_0 = 3.53339 \times 10^2$ $b_1 = -1.31764$ $b_2 = 1.22935 \times 10^{-3}$	$V - V_{\text{att}}$ $AD(\%) = 3.3 \times 10^{-2}$ $AAD(\%) = 8.4 \times 10^{-2}$ $MD(\%) = 1.0$	$\rho AD(\%) = 4.5 \times 10^{-6} AAD(\%) = 3.6 \times 10^{-5} AAD(\%) = 3.6 \times 10^{-3} MD(\%) = 1.9 \times 10^{-2}$	κ_{T} (Eq. 9) AD(%) = 0.2 AAD(%) = 0.2 AAD(%) = 0.3 MD(%) = 1.6
butyleyclohexane $p_0 = 9.73126 \times 10^2$ $p_1 = -4.24368 \times 10^{-1}$ $p_2 = -6.61410 \times 10^{-4}$ $p_3 = 2.91536 \times 10^{-7}$	$ a_0 = -2.67250 \times 10^{-5} \\ a_1 = -3.57690 \times 10^{-7} \\ a_2 = 3.05042 \times 10^{-10} $	$ b_0 = 3.54501 \times 10^2 \\ b_1 = -1.16908 \\ b_2 = 9.96142 \times 10^{-4} $	$\begin{array}{l} V - V_{\text{atm}} \\ \text{AD}(\%_{0}) = 8.5 \times 10^{-2} \\ \text{AAD}(\%_{0}) = 1.5 \times 10^{-1} \\ \text{MD}(\%_{0}) = 9.1 \times 10^{-1} \end{array}$	$ \begin{array}{l} \rho \\ \mathrm{AD}(\%) = 8.4 \times 10^{-4} \\ \mathrm{AAD}(\%) = 4.9 \times 10^{-3} \\ \mathrm{ADD}(\%) = 1.6 \times 10^{-2} \\ \mathrm{MD}(\%) = 1.6 \times 10^{-2} \end{array} $	$ \begin{array}{l} \mathbf{\kappa}_{T} \ (\mathbf{Eq. 9}) \\ \mathrm{AD}(\%) = 0.2 \\ \mathrm{AAD}(\%) = 0.2 \\ \mathrm{AAD}(\%) = 0.5 \\ MD(\%) = 1.7 \end{array} $

of a/(p+b). The parameters determined by a least-squares method are listed in Table V along with the deviations observed between the data and the values of $v-v_{atm}$ calculated from the integration of Eq. (6) with respect to pressure. These deviations, which are less than the experimental error, show that the function leads to a good representation of volume change and thus to the isothermal compressibility. To check the accuracy, the isothermal compressibilities determined from Eq. (6) were compared (Table V) to those calculated from speed of sound using the following relation:

$$\kappa_T = \frac{1}{\rho u^2} + \frac{T \alpha_P^2}{\rho C_P} \tag{9}$$

in which the isobaric expansion α_P was evaluated from derivation of density data, whereas the values of heat capacity come from:

$$C_P = C_{P_{\text{atm}}} - T \int_{P_{\text{atm}}}^{P} \frac{\partial^2 1/\rho}{\partial T^2} \,\mathrm{d}p \tag{10}$$

The maximum deviation observed between the two procedures is 1.7%. This value shows that Eq. (6) adjusted in this way yields very good predictions of isothermal compressibility.

Comparison of the present density data with those reported by the API Research Project 42 at atmospheric pressure shows an absolute average deviation of 0.06% and a maximum deviation of only 0.1% for methylcyclopentane. For butylcyclohexane, a deviation of 0.02% is observed at low temperature (293 to 333 K) whereas a deviation of 0.5% is obtained at higher temperature. Excellent agreement was found with the data of Tatevskiy [18] for methylcyclopentane with an average deviation of 0.01% and a maximum deviation of 0.02%.

REFERENCES

- 1. L. A. Davis and R. B. Gordon, J. Chem. Phys. 46:2650 (1967).
- 2. G. S. Kell and E. Whalley, J. Chem. Phys. 62:3496 (1975).
- 3. D. P. Wang and F. J. Millero, J. Geophys. Res. 78:7122 (1973).
- 4. R. L. Mills, D. H. Lienbenberg, and J. C. Bronson, J. Chem. Phys. 63:1198 (1975).
- S. Ye, B. Lagourette, J. Alliez, H. Saint-Guirons, P. Xans, and F. Montel, *Fluid Phase Equilib.* 74:157 (1992).
- 6. J. L. Daridon, A. Lagrabette, and B. Lagourette, J. Chem. Thermodyn. 30:607 (1998).
- 7. J. L. Daridon, Acustica 80:416 (1994).
- 8. V. A. Del Grosso and C. W. Mader, J. Acoust. Soc. Am. 52:1442 (1972).
- 9. W. D. Wilson, J. Acoust. Soc. Am. 31:1067 (1959).
- 10. J. P. Petitet, R. Tufeu, and B. Le Neindre, Int. J. Thermophys. 4:35 (1983).

Thermodynamic Properties of Liquid Methylcyclopentane and Butylcyclohexane

- 11. J. L. Daridon, B. Lagourette, and J. P. E. Grolier, Int. J. Thermophys. 19:145 (1998).
- 12. J. L. Daridon, A. Lagrabette, and B. Lagourette, Phys. Chem. Liq. 37:137 (1999).
- B. Lagourette, C. Boned, H. Saint-Guirons, P. Xans, and H. Zhou, *Meas. Sci. Technol.* 3:699 (1992).
- 14. J. L. Daridon, A. Lagrabette, and B. Lagourette, J. Chem. Thermodyn. 30:607 (1998).
- 15. L. Denielou, J. P. Petitet, C. Tequi, and G. Syfosse, Bull. Minéral. 106:139 (1983).
- M. Zabranski, V. Ruzicka, V. Majer, and E. S. Domalski, J. Phys. Chem. Ref. Data Monograph 6 (1996).
- Selected values of thermodynamic properties of hydrocarbons and related compounds, API Research Project 44 (1953).
- V. M. Tatevskiy, *Physico-Chemical Properties of Individual Hydrocarbons* (Gostoptech Press, Moscow, 1960).